Nanosystem self-assembly pathways discovered via all-atom multiscale analysis.

نویسندگان

  • Stephen D Pankavich
  • Peter J Ortoleva
چکیده

We consider the self-assembly of composite structures from a group of nanocomponents, each consisting of particles within an N-atom system. Self-assembly pathways and rates for nanocomposites are derived via a multiscale analysis of the classical Liouville equation. From a reduced statistical framework, rigorous stochastic equations for population levels of beginning, intermediate, and final aggregates are also derived. It is shown that the definition of an assembly type is a self-consistency criterion that must strike a balance between precision and the need for population levels to be slowly varying relative to the time scale of atomic motion. The deductive multiscale approach is complemented by a qualitative notion of multicomponent association and the ensemble of exact atomic-level configurations consistent with them. In processes such as viral self-assembly from proteins and RNA or DNA, there are many possible intermediates, so that it is usually difficult to predict the most efficient assembly pathway. However, in the current study, rates of assembly of each possible intermediate can be predicted. This avoids the need, as in a phenomenological approach, for recalibration with each new application. The method accounts for the feedback across scales in space and time that is fundamental to nanosystem self-assembly. The theory has applications to bionanostructures, geomaterials, engineered composites, and nanocapsule therapeutic delivery systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-assembly of nanocomponents into composite structures: derivation and simulation of Langevin equations.

The kinetics of the self-assembly of nanocomponents into a virus, nanocapsule, or other composite structure is analyzed via a multiscale approach. The objective is to achieve predictability and to preserve key atomic-scale features that underlie the formation and stability of the composite structures. We start with an all-atom description, the Liouville equation, and the order parameters charac...

متن کامل

A Review of Two Multiscale Methods for the Simulation of Macromolecular Assemblies: Multiscale Perturbation and Multiscale Factorization

Many mesoscopic N -atom systems derive their structural and dynamical properties from processes coupled across multiple scales in space and time. That is, they simultaneously deform or display collective behaviors, while experiencing atomic scale vibrations and collisions. Due to the large number of atoms involved and the need to simulate over long time periods of biological interest, tradition...

متن کامل

A smart ZnO@polydopamine-nucleic acid nanosystem for ultrasensitive live cell mRNA imaging by the target-triggered intracellular self-assembly of active DNAzyme nanostructures† †Electronic supplementary information (ESI) available: Oligonucleotide sequences, DLS and zeta potential measurements, TEM images, absorption and fluorescence spectra, cytotoxicity assay and CLSM images. See DOI: 10.1039/c6sc04633a Click here for additional data file.

Efficient strategies for the ultrasensitive imaging of gene expression in living cells are essential in chemistry and cell biology. Here, we report a novel and efficient enzyme-free dual signal amplification strategy for live cell mRNA imaging by using a smart nucleic acid hairpin-based nanosystem. This nanosystem consists of a ZnO nanoparticle core, an interlayer of polydopamine and an outer l...

متن کامل

Space warping order parameters and symmetry: application to multiscale simulation of macromolecular assemblies.

Coarse-grained features of macromolecular assemblies are understood via a set of order parameters (OPs) constructed in terms of their all-atom configuration. OPs are shown to be slowly changing in time and capture the large-scale spatial features of macromolecular assemblies. The relationship of these variables to the classic notion of OPs based on symmetry breaking phase transitions is discuss...

متن کامل

A new multiscale algorithm and its application to coarse-grained peptide models for self-assembly.

Peptide self-assembly plays a role in a number of diseases, in pharmaceutical degradation, and in emerging biomaterials. Here, we aim to develop an accurate molecular-scale picture of this process using a multiscale computational approach. Recently, Shell (Shell, M. S. J. Chem. Phys. 2008, 129, 144108-7) developed a coarse-graining methodology that is based on a thermodynamic quantity called th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 116 29  شماره 

صفحات  -

تاریخ انتشار 2012